1988 |
2'-dG |
Reichard, P.
|
Interactions between deoxyribonucleotide and DNA synthesis. |
Annu. Rev. Biochem |
1992 |
T-box |
Henkin, T. M., Glass, B. L. & Grundy, F. J.
|
Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. |
J. Bacteriol |
1993 |
T-box |
Grundy, F. J. & Henkin, T. M.
|
tRNA as a positive regulator of transcription antitermination in B. subtilis. |
Cell |
1997 |
Adenine |
Christiansen, L. C., Schou, S., Nygaard, P. & Saxild, H. H.
|
Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. |
J. Bacteriol |
1997 |
Guanine |
Christiansen, L. C., Schou, S., Nygaard, P. & Saxild, H. H.
|
Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. |
J. Bacteriol |
1998 |
SAM-I_clan |
Grundy, F. J. & Henkin, T. M.
|
The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. |
Mol. Microbiol |
1999 |
FMN |
Gelfand, M. S., Mironov, A. A., Jomantas, J., Kozlov, Y. I. & Perumov, D. A.
|
A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. |
Trends Genet |
1999 |
TPP |
Begley, T. P. et al.
|
Thiamin biosynthesis in prokaryotes. |
Arch. Microbiol |
1999 |
HMP-PP |
Begley, T. P. et al.
|
Thiamin biosynthesis in prokaryotes. |
Arch. Microbiol |
2000 |
Cobalamine |
Nou, X. & Kadner, R. J.
|
Adenosylcobalamin inhibits ribosome binding to btuB RNA. |
Proc. Natl. Acad. Sci. U. S. A |
2001 |
TPP |
Miranda-Ríos, J., Navarro, M. & Soberón, M.
|
A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. |
Proc. Natl. Acad. Sci. U. S. A |
2002 |
FMN |
Vitreschak, A. G., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S.
|
Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. |
Nucleic Acids Res |
2002 |
FMN |
Winkler, W. C., Cohen-Chalamish, S. & Breaker, R. R.
|
An mRNA structure that controls gene expression by binding FMN. |
Proc. Natl. Acad. Sci. U. S. A |
2002 |
TPP |
Winkler, W., Nahvi, A. & Breaker, R. R.
|
Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. |
Nature |
2002 |
Cobalamine |
Nahvi, A. et al.
|
Genetic control by a metabolite binding mRNA. |
Chem. Biol |
2003 |
Lysine |
Grundy, F. J., Lehman, S. C. & Henkin, T. M.
|
The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes |
Proc. Natl. Acad. Sci. U. S. A |
2003 |
Lysine |
Sudarsan, N., Wickiser, J. K., Nakamura, S., Ebert, M. S. & Breaker, R. R.
|
An mRNA structure in bacteria that controls gene expression by binding lysine |
Genes Dev |
2003 |
Adenine |
Johansen, L. E., Nygaard, P., Lassen, C., Agersø, Y. & Saxild, H. H.
|
Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). |
J. Bacteriol |
2003 |
Guanine |
Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C. & Breaker, R. R.
|
Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria. |
Cell |
2003 |
TPP |
Sudarsan, N., Barrick, J. E. & Breaker, R. R.
|
Metabolite-binding RNA domains are present in the genes of eukaryotes. |
RNA |
2003 |
SAM-I_clan |
Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E., & Breaker, R. R
|
An mRNA structure that controls gene expression by binding S-adenosylmethionine. |
Nat. Struct. Biol |
2003 |
SAM-I_clan |
McDaniel, B. A., Grundy, F. J., Artsimovitch, I., & Henkin, T. M.
|
Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. |
Proc. Natl. Acad. Sci. U. S. A |
2003 |
Cobalamine |
Vitreschak, A. G., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S.
|
Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. |
RNA |
2003 |
Cobalamine |
Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. & Gelfand, M. S.
|
Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. |
J. Biol. Chem |
2003 |
TPP |
Kubodera, T., M. Watanabe, K. Yoshiuchi, N. Yamashita, A. Nishimura, S. Nakai, K. Gomi and H. Hanamoto.
|
Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5'-UTR |
FEBS Lett |
2004 |
Adenine |
Mandal, M. & Breaker, R. R.
|
Adenine riboswitches and gene activation by disruption of a transcription terminator. |
Nat. Struct. Mol. Biol |
2004 |
Adenine |
Serganov, A. et al.
|
Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs. |
Chem. Biol |
2004 |
Guanine |
Serganov, A. et al.
|
Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs. |
Chem. Biol |
2004 |
ppGpp |
Barrick, J. E. et al.
|
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. |
Proc. Natl. Acad. Sci. U. S. A |
2004 |
PRPP |
Barrick, J. E. et al.
|
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. |
Proc. Natl. Acad. Sci. U. S. A |
2004 |
ADP |
Barrick, J. E. et al.
|
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. |
Proc. Natl. Acad. Sci. U. S. A |
2004 |
c-di-AMP |
Barrick, J. E. et al.
|
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. |
Proc. Natl. Acad. Sci. U. S. A |
2004 |
Magnesium |
Barrick, J. E. et al.
|
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. |
Proc. Natl. Acad. Sci. U. S. A |
2004 |
Manganese |
Barrick, J. E. et al.
|
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. |
Proc. Natl. Acad. Sci. U. S. A |
2004 |
Guanine |
Batey, R. T., Gilbert, S. D. & Montange, R. K.
|
Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. |
Nature |
2004 |
GlcN6P |
Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R.
|
Control of gene expression by a natural metabolite-responsive ribozyme. |
Nature |
2004 |
GlcN6P |
Knudsen, S. M. & Ellington, A. D.
|
Ribozyme déjà vu. |
Nat. Struct. Mol. Biol |
2004 |
Glycine |
Mandal, M. et al.
|
A glycine-dependent riboswitch that uses cooperative binding to control gene expression |
Science |
2004 |
Cobalamine |
Nahvi, A., Barrick, J. E. & Breaker, R. R.
|
Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. |
Nucleic Acids Res |
2005 |
T-box |
Yousef, M. R., Grundy, F. J. & Henkin, T. M.
|
Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA. |
J. Mol. Biol |
2005 |
FMN |
Wickiser, J. K., Winkler, W. C., Breaker, R. R. & Crothers, D. M.
|
The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. |
Mol |
2005 |
Adenine |
Wickiser, J. K., Cheah, M. T., Breaker, R. R. & Crothers, D. M.
|
The Kinetics of Ligand Binding by an Adenine-Sensing Riboswitch. |
Biochemistry |
2005 |
MoCo |
Schwarz, G.
|
Molybdenum cofactor biosynthesis and deficiency. |
Cell. Mol. Life Sci |
2005 |
Wco |
Schwarz, G.
|
Molybdenum cofactor biosynthesis and deficiency. |
Cell. Mol. Life Sci |
2005 |
TPP |
Yamauchi, T. et al.
|
Roles of Mg2+ in TPP-dependent riboswitch. |
FEBS Lett |
2005 |
TPP |
Sudarsan, N., Cohen-Chalamish, S., Nakamura, S., Emilsson, G. M. & Breaker, R. R.
|
Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. |
Chem. Biol |
2005 |
SAM-II_clan |
Corbino, K. A., Barrick, J. E., Lim, J., Welz, R., Tucker, B. J., Puskarz, I., Mandal, M., Rudnick, N. D., & Breaker, R. R.
|
Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. |
Genome Biol |
2006 |
Adenine |
Lemay, J. F., Penedo, J. C., Tremblay, R., Lilley, D. M. & Lafontaine, D. A.
|
Folding of the Adenine Riboswitch. |
Chem. Biol |
2006 |
Guanine |
Gilbert, S. D., Stoddard, C. D., Wise, S. J. & Batey, R. T.
|
Thermodynamic and Kinetic Characterization of Ligand Binding to the Purine Riboswitch Aptamer Domain. |
J. Mol. Biol |
2006 |
Magnesium |
Cromie, M. J., Shi, Y., Latifi, T. & Groisman, E. A.
|
An RNA sensor for intracellular Mg(2+). |
Cell |
2006 |
GlcN6P |
Jansen, J. A., McCarthy, T. J., Soukup, G. A. & Soukup, J. K.
|
Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. |
Nat. Struct. Mol. Biol |
2006 |
GlcN6P |
Klein, D. J. & Ferré-D’Amaré, A. R.
|
Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. |
Science |
2006 |
GlcN6P |
Soukup, G. A.
|
Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure. |
Nucleic Acids Res |
2006 |
TPP |
Thore, S., Leibundgut, M. & Ban, N.
|
Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. |
Science |
2006 |
TPP |
Serganov, A., Polonskaia, A., Phan, A. T., Breaker, R. R. & Patel, D. J.
|
Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. |
Nature |
2006 |
TPP |
Edwards, T. E. & Ferré-D’Amaré, A. R.
|
Crystal Structures of the Thi-Box Riboswitch Bound to Thiamine Pyrophosphate Analogs Reveal Adaptive RNA-Small Molecule. Recognition |
Structure |
2006 |
SAM-I_clan |
Montange, R. K., & Batey, R. T.
|
Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. |
Nature |
2006 |
SAM-II_clan |
Lim, J., Winkler, W. C., Nakamura, S., Scott, V., & Breaker, R. R.
|
Molecular-recognition characteristics of SAM-binding riboswitches. |
Angew. Chem. Int. Ed Engl |
2006 |
SAM-III |
Fuchs, R. T., Grundy, F. J., & Henkin, T. M.
|
The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. |
Nat. Struct. Mol. Biol |
2006 |
GlcN6P |
Roth, A., Nahvi, A., Lee, M., Jona, I. & Breaker, R. R.
|
Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. |
RNA |
2007 |
Lysine |
Blouin, S. & Lafontaine, D. A.
|
A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control |
RNA |
2007 |
Lysine |
Blount, K. F., Wang, J. X., Lim, J., Sudarsan, N. & Breaker, R. R.
|
Antibacterial lysine analogs that target lysine riboswitches |
Nat. Chem. Biol |
2007 |
MoCo |
Weinberg, Z. et al.
|
Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. |
Nucleic Acids Res |
2007 |
Wco |
Weinberg, Z. et al.
|
Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. |
Nucleic Acids Res |
2007 |
SAM-I_clan |
Weinberg, Z. et al.
|
Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. |
Nucleic Acids Res |
2007 |
c-AMP-GMP |
Weinberg, Z. et al.
|
Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. |
Nucleic Acids Res |
2007 |
c-di-GMP |
Weinberg, Z. et al.
|
Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. |
Nucleic Acids Res |
2007 |
2'-dG |
Kim, J. N., Roth, A. & Breaker, R. R.
|
Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine. |
Proc. Natl. Acad. Sci. U. S. A |
2007 |
Magnesium |
Dann, C. E., 3rd et al.
|
Structure and mechanism of a metal-sensing regulatory RNA. |
Cell |
2007 |
TPP |
Bocobza, S. et al.
|
Riboswitch-dependent gene regulation and its evolution in the plant kingdom. |
Genes Dev |
2007 |
TPP |
Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R.
|
Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. |
Nature |
2007 |
TPP |
Wachter, A. et al.
|
Riboswitch control of gene expression in plants by splicing and alternative 3' end processing of mRNAs. |
Plant Cell |
2007 |
Glycine |
Lipfert, J. et al.
|
Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae |
J. Mol. Biol |
2007 |
SAM-I_clan |
Yao, Z., Barrick, J., Weinberg, Z., Neph, S., Breaker, R., Tompa, M., and Ruzzo, W.L.
|
A computational pipeline for high-throughput discovery of cis-regulatory noncoding RNA in prokaryotes. |
PLoS Comput. Biol |
2007 |
PreQ1 |
Roth, A. et al
|
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain |
Nat. Struct. Mol. Biol |
2007 |
SAM-III |
Fuchs, R. T., Grundy, F. J., & Henkin, T. M.
|
S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the S(MK) box translational riboswitch RNA. |
Proc. Natl. Acad. Sci. U. S. A |
2008 |
Lysine |
Garst, A. D., Héroux, A., Rambo, R. P. & Batey, R. T.
|
Crystal structure of the lysine riboswitch regulatory mRNA element |
J. Biol. Chem |
2008 |
Lysine |
Serganov, A., Huang, L. & Patel, D. J.
|
Structural insights into amino acid binding and gene control by a lysine riboswitch |
Nature |
2008 |
SAH |
Wang, J. X., Lee, E. R., Morales, D. R., Lim, J., & Breaker, R. R.
|
Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. |
Mol |
2008 |
MoCo |
Regulski, E. E. et al.
|
A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. |
Mol. Microbiol |
2008 |
Wco |
Regulski, E. E. et al.
|
A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. |
Mol. Microbiol |
2008 |
MoCo |
Bevers, L. E. et al.
|
Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors. |
Biochemistry |
2008 |
Wco |
Bevers, L. E. et al.
|
Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors. |
Biochemistry |
2008 |
TPP |
Thore, S., Frick, C. & Ban, N.
|
Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. |
J. Am. Chem. Soc |
2008 |
Glycine |
Kwon, M. & Strobel, S. A.
|
Chemical basis of glycine riboswitch cooperativity |
RNA |
2008 |
SAM-I_clan |
Weinberg, Z., Regulski, E. E., Hammond, M. C., Barrick, J. E., Yao, Z., Ruzzo, W. L., & Breaker, R. R.
|
The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. |
RNA |
2008 |
SAM-II_clan |
Gilbert, S. D., Rambo, R. P., Van Tyne, D., & Batey, R. T.
|
Structure of the SAM-II riboswitch bound to S-adenosylmethionine. |
Nat. Struct. Mol. Biol |
2008 |
PreQ1 |
Meyer, M. M., Roth, A., Chervin, S. M., Garcia, G. A. & Breaker, R. R
|
Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria |
RNA |
2008 |
SAM-III |
Lu, C., Smith, A. M., Fuchs, R. T., Ding, F., Rajashankar, K., Henkin, T. M., & Ke, A.
|
Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. |
Nat. Struct. Mol. Biol |
2008 |
c-di-GMP |
Sudarsan, N. et al.
|
Riboswitches in eubacteria sense the second messenger cyclic di-GMP |
Science |
2009 |
T-box |
Gutiérrez-Preciado, A., Henkin, T. M., Grundy, F. J., Yanofsky, C. & Merino, E.
|
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. |
Microbiol. Mol. Biol. Rev |
2009 |
FMN |
Lee, E. R., Blount, K. F. & Breaker, R. R.
|
Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. |
RNA Biol |
2009 |
FMN |
Serganov, A., Huang, L. & Patel, D. J.
|
Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. |
Nature |
2009 |
Guanine |
Gilbert, S. D., Reyes, F. E., Edwards, A. L. & Batey, R. T.
|
Adaptive Ligand Binding by the Purine Riboswitch in the Recognition of Guanine and Adenine Analogs. |
Structure |
2009 |
Magnesium |
Wakeman, C. A., Ramesh, A. & Winkler, W. C.
|
Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. |
J. Mol. Biol |
2009 |
GlcN6P |
Cochrane, J. C., Lipchock, S. V., Smith, K. D. & Strobel, S. A.
|
Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. |
Biochemistry |
2009 |
SAM-II_clan |
Meyer, M. M., Ames, T. D., Smith, D. P., Weinberg, Z., Schwalbach, M. S., Giovannoni, S. J., & Breaker, R. R.
|
Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter Ubique'. |
BMC Genomics |
2009 |
SAM-II_clan |
Poiata, E., Meyer, M. M., Ames, T. D., & Breaker, R. R.
|
A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. |
RNA |
2009 |
PreQ1 |
Klein, D. J., Edwards, T. E. & Ferré-D’Amaré, A. R.
|
Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. |
Nat. Struct. Mol. Biol |
2009 |
PreQ1 |
Kang, M., Peterson, R. & Feigon, J.
|
Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of Trna. |
Mol. Cell |
2009 |
PreQ1 |
Spitale, R. C., Torelli, A. T., Krucinska, J., Bandarian, V. & Wedekind, J. E.
|
The Structural Basis for Recognition of the PreQ0 Metabolite by an Unusually Small Riboswitch Aptamer Domain. |
J. Biol. Chem |
2009 |
c-di-GMP |
Smith, K. D. et al
|
Structural basis of ligand binding by a c-di-GMP riboswitch |
Nat. Struct. Mol. Biol |
2010 |
Adenine |
Delfosse, V. et al.
|
Riboswitch structure: an internal residue mimicking the purine ligand. |
Nucleic Acids Res |
2010 |
SAH |
Edwards, A. L., Reyes, F. E., Héroux, A., & Batey, R. T.
|
Structural basis for recognition of S-adenosylhomocysteine by riboswitches. |
RNA |
2010 |
SAH |
Chou, M. Y., Lin, S. C., & Chang, K. Y.
|
Stimulation of -1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot. |
RNA |
2010 |
Cobalamine |
Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., & Breaker, R. R.
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. |
Genome Biol |
2010 |
SAM-I_clan |
Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., & Breaker, R. R.
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. |
Genome Biol |
2010 |
SAM-SAH |
Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., & Breaker, R. R.
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. |
Genome Biol |
2010 |
ZTP |
Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., & Breaker, R. R.
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. |
Genome Biol |
2010 |
Fluoride |
Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., & Breaker, R. R.
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. |
Genome Biol |
2010 |
TPP |
Kulshina, N., Edwards, T. E. & Ferré-D’Amaré, A. R.
|
Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate. riboswitch |
RNA |
2010 |
Glycine |
Huang, L., Serganov, A. & Patel, D. J.
|
Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch |
Mol. Cell |
2010 |
Glycine |
Lipfert, J., Sim, A. Y. L., Herschlag, D. & Doniach, S.
|
Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding |
RNA |
2010 |
SAM-I_clan |
Montange, R. K., Mondragón, E., van Tyne, D., Garst, A. D., Ceres, P., & Batey, R. T.
|
Discrimination between closely related cellular metabolites by the SAM-I riboswitch. |
J. Mol. Biol |
2010 |
SAM-I_clan |
Stoddard, C. D., Montange, R. K., Hennelly, S. P., Rambo, R. P., Sanbonmatsu, K. Y., & Batey, R. T.
|
Free state conformational sampling of the SAM-I riboswitch aptamer domain. |
Structure |
2010 |
SAM-I_clan |
Lu, C., Ding, F., Chowdhury, A., Pradhan, V., Tomsic, J., Holmes, W. M., Henkin, T. M., & Ke, A.
|
SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. |
J. Mol. Biol |
2010 |
THF |
Ames, T. D., Rodionov, D. A., Weinberg, Z. & Breaker, R. R.
|
A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. |
Chem. Biol |
2010 |
PreQ1 |
Rieder, U., Kreutz, C. & Micura, R.
|
Folding of a transcriptionally acting preQ1 riboswitch. |
Proc. Natl. Acad. Sci. U. S. A |
2010 |
SAM-III |
Priyakumar U. D.
|
Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch. |
J. Phys. Chem |
2010 |
SAM-III |
Smith, A. M., Fuchs, R. T., Grundy, F. J., & Henkin, T. M.
|
The SAM-responsive S(MK) box is a reversible riboswitch. |
Mol. Microbiol |
2010 |
c-di-GMP |
Smith, K. D., Lipchock, S. V., Livingston, A. L., Shanahan, C. A. & Strobel, S. A.
|
Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch |
Biochemistry |
2010 |
c-di-GMP |
Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N. & Breaker, R. R.
|
An allosteric self-splicing ribozyme triggered by a bacterial second messenger |
Science |
2011 |
Glutamine |
Ames, T. D. & Breaker, R. R.
|
Bacterial aptamers that selectively bind glutamine |
RNA Biol |
2011 |
Lysine |
Blouin, S., Chinnappan, R. & Lafontaine, D. A.
|
Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation |
Nucleic Acids Res |
2011 |
FMN |
Vicens, Q., Mondragón, E. & Batey, R. T.
|
Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. |
Nucleic Acids Res |
2011 |
2'-dG |
Pikovskaya, O., Polonskaia, A., Patel, D. J. & Serganov, A.
|
Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch. |
Nat. Chem. Biol |
2011 |
Guanine |
Buck, J. et al.
|
Influence of ground-state structure and Mg 2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain. |
Nucleic Acids Res |
2011 |
Magnesium |
Ramesh, A., Wakeman, C. A. & Winkler, W. C.
|
Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. |
J. Mol. Biol |
2011 |
GlcN6P |
Watson, P. Y. & Fedor, M. J.
|
The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. |
Nat. Struct. Mol. Biol |
2011 |
Glycine |
Butler, E. B., Xiong, Y., Wang, J. & Strobel, S. A.
|
Structural basis of cooperative ligand binding by the glycine riboswitch |
Chem. Biol |
2011 |
Glycine |
Erion, T. V. & Strobel, S. A.
|
Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch |
RNA |
2011 |
SAM-I_clan |
Heppell, B., Blouin, S., Dussault, A. M., Mulhbacher, J., Ennifar, E., Penedo, J. C., & Lafontaine, D. A.
|
Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. |
Nat. Chem. Biol |
2011 |
THF |
Huang, L., Ishibe-Murakami, S., Patel, D. J. & Serganov, A.
|
Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch. |
Proc. Natl. Acad. Sci. U. S. A |
2011 |
THF |
Trausch, J. J., Ceres, P., Reyes, F. E. & Batey, R. T.
|
The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. |
Structure |
2011 |
SAM-II_clan |
Haller, A., Rieder, U., Aigner, M., Blanchard, S. C., & Micura, R.
|
Conformational capture of the SAM-II riboswitch. |
Nat. Chem. Biol |
2011 |
PreQ1 |
Jenkins, J. L., Krucinska, J., McCarty, R. M., Bandarian, V. & Wedekind, J. E.
|
Comparison of a PreQ1 Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation. |
J. Biol. Chem |
2011 |
SAM-III |
Lu, C., Smith, A. M., Ding, F., Chowdhury, A., Henkin, T. M., & Ke, A.
|
Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch. |
J. Mol. Biol |
2011 |
c-di-GMP |
Smith, K. D., Shanahan, C. A., Moore, E. L., Simon, A. C. & Strobel, S. A.
|
Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches |
Proc. Natl. Acad. Sci. U. S. A |
2012 |
Lysine |
Garst, A. D., Porter, E. B. & Batey, R. T.
|
Insights into the regulatory landscape of the lysine riboswitch |
J. Mol. Biol |
2012 |
Lysine |
Budhathoki, P., Bernal-Perez, L. F., Annunziata, O. & Ryu, Y.
|
Rationally-designed fluorescent lysine riboswitch probes |
Org. Biomol. Chem |
2012 |
Lysine |
Wilson-Mitchell, S. N., Grundy, F. J. & Henkin, T. M.
|
Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch |
Nucleic Acids Res |
2012 |
Adenine |
Frieda, K. L. & Block, S. M.
|
Direct observation of cotranscriptional folding in an adenine riboswitch. |
Science |
2012 |
GlcN6P |
Viladoms, J. & Fedor, M. J.
|
The glmS ribozyme cofactor is a general acid-base catalyst. |
J. Am. Chem. Soc |
2012 |
SAM-I_clan |
Eschbach, S. H., St-Pierre, P., Penedo, J. C., & Lafontaine, D. A.
|
Folding of the SAM-I riboswitch: a tale with a twist. |
RNA Biol |
2012 |
SAM-I_clan |
Boyapati, V. K., Huang, W., Spedale, J., & Aboul-Ela, F.
|
Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch. |
RNA |
2012 |
c-di-AMP |
Watson, P. Y. & Fedor, M. J.
|
The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. |
Nat. Chem. Biol |
2012 |
Cobalamine |
Johnson, J. E., Reyes, F. E., Polaski, J. T. & Batey, R. T.
|
B12 cofactors directly stabilize an mRNA regulatory switch. |
Nature |
2012 |
Cobalamine |
Peselis, A. & Serganov, A.
|
Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. |
Nat. Struct. Mol. Biol |
2012 |
SAM-II_clan |
Chen, B., Zuo, X., Wang, Y. X., & Dayie, T. K.
|
Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. |
Nucleic Acids Res |
2012 |
SAM-II_clan |
Doshi, U., Kelley, J. M., & Hamelberg, D.
|
Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch. |
RNA |
2012 |
PreQ1 |
Santner, T., Rieder, U., Kreutz, C. & Micura, R.
|
Pseudoknot preorganization of the preQ1 class I riboswitch. |
J. Am. Chem. Soc |
2012 |
Fluoride |
Baker, J. L. et al.
|
Widespread genetic switches and toxicity resistance proteins for fluoride. |
Science |
2012 |
Fluoride |
Ren, A., Rajashankar, K. R. & Patel, D. J.
|
Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. |
Nature |
2012 |
c-di-GMP |
Smith, K. D., Lipchock, S. V. & Strobel, S. A.
|
Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer |
Biochemistry |
2013 |
T-box |
Zhang, J. & Ferré-D’Amaré, A. R.
|
Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. |
Nature |
2013 |
MoCo |
Iobbi-Nivol, C. & Leimkühler, .
|
Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. |
Biochim. Biophys |
2013 |
Wco |
Iobbi-Nivol, C. & Leimkühler, .
|
Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. |
Biochim. Biophys |
2013 |
c-di-AMP |
Nelson, J. W. et al.
|
Riboswitches in eubacteria sense the second messenger c-di-AMP. |
Nat. Chem. Biol |
2013 |
PreQ1 |
Soulière, M. F. et al.
|
Tuning a riboswitch response through structural extension of a pseudoknot. |
Proc. Natl. Acad. Sci. U. S. A |
2013 |
PreQ1 |
Liberman, J. A., Salim, M., Krucinska, J. & Wedekind, J. E.
|
Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. |
Nat. Chem. Biol |
2013 |
c-di-GMP |
Kalia, D. et al.
|
Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis |
Chem. Soc. Rev |
2014 |
SAM-I_clan |
Price IR, Grigg JC, Ke A.
|
Common themes and differences in SAM recognition among SAM riboswitches. |
Biochim Biophys Acta |
2014 |
SAM-II_clan |
Price IR, Grigg JC, Ke A.
|
Common themes and differences in SAM recognition among SAM riboswitches. |
Biochim Biophys Acta |
2014 |
SAM-III |
Price IR, Grigg JC, Ke A.
|
Common themes and differences in SAM recognition among SAM riboswitches. |
Biochim Biophys Acta |
2014 |
TPP |
Warner, K. D. et al.
|
Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. |
Chem. Biol |
2014 |
Glycine |
Ruff, K. M. & Strobel, S. A.
|
Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy |
RNA |
2014 |
SAM-I_clan |
Trausch, J. J., Xu, Z., Edwards, A. L., Reyes, F. E., Ross, P. E., Knight, R., & Batey, R. T.
|
Structural basis for diversity in the SAM clan of riboswitches. |
Proc. Natl. Acad. Sci. U. S. A |
2014 |
THF |
Trausch, J. J. & Batey, R. T.
|
A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. |
Chem. Biol |
2014 |
c-di-AMP |
Ren, A. & Patel, D. J.
|
c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. |
Nat. Chem. Biol |
2014 |
c-di-AMP |
Gao, A. & Serganov, A.
|
Structural insights into recognition of c-di-AMP by the ydaO riboswitch. |
Nat. Chem. Biol |
2014 |
c-di-AMP |
Jones, C. P. & Ferré-D’Amaré, A. R.
|
Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. |
EMBO J |
2014 |
Cobalamine |
Choudhary, P. K. & Sigel, R. K.
|
Mg2+-induced conformational changes in the btuB riboswitch from E. coli. |
RNA |
2014 |
PreQ1 |
Kang, M., Eichhorn, C. D. & Feigon, J.
|
Structural determinants for ligand capture by a class II preQ1 riboswitch. |
Proc. Natl. Acad. Sci. U. S. A |
2014 |
PreQ1 |
McCown, P. J., Liang, J. J., Weinberg, Z. & Breaker, R. R.
|
Structural, Functional, and Taxonomic Diversity of Three PreQ1 Riboswitch Classes. |
Chem. Biol |
2015 |
Glutamine |
Ren, A. et al.
|
Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch |
Cell Rep |
2015 |
Lysine |
Zhou, L.-B. & Zeng, A.-P.
|
Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum |
ACS Synth. Biol |
2015 |
Lysine |
Zhou, L.-B. & Zeng, A.-P.
|
Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum |
ACS Synth. Biol |
2015 |
Lysine |
Smith-Peter, E., Lamontagne, A.-M. & Lafontaine, D. A.
|
Role of lysine binding residues in the global folding of the lysC riboswitch |
RNA Biol |
2015 |
T-box |
Sherwood, A. V., Grundy, F. J. & Henkin, T. M.
|
T box riboswitches in Actinobacteria: translational regulation via novel tRNA interactions. |
Proc. Natl. Acad. Sci. U. S. A |
2015 |
FMN |
Blount, K. F. et al.
|
Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. |
Antimicrob. Agents Chemother |
2015 |
FMN |
Howe, J. A. et al.
|
Selective small-molecule inhibition of an RNA structural element. |
Nature |
2015 |
NiCo |
Furukawa, K. et al.
|
Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. |
Mol. Cell |
2015 |
c-AMP-GMP |
Nelson, J. W. et al.
|
Control of bacterial exoelectrogenesis by c-AMP-GMP. |
Proc. Natl. Acad. Sci. U. S. A |
2015 |
c-AMP-GMP |
Ren, A. et al.
|
Structural basis for molecular discrimination by a 3',3'-cGAMP sensing riboswitch. |
Cell Rep |
2015 |
c-AMP-GMP |
Kellenberger, C. A. et al.
|
GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. |
Proc. Natl. Acad. Sci. U. S. A |
2015 |
ZTP |
Kim, P. B., Nelson, J. W. & Breaker, R. R.
|
An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism |
Mol. Cell |
2015 |
ZTP |
Ren, A., Rajashankar, K. R. & Patel, D. J.
|
Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism |
Structure |
2015 |
ZTP |
Trausch, J. J., Marcano-Velázquez, J. G., Matyjasik, M. M. & Batey, R. T.
|
Metal Ion-Mediated Nucleobase Recognition by the ZTP Riboswitch |
Chem. Biol |
2015 |
ZTP |
Jones, C. P. & Ferré-D’Amaré, A. R.
|
Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains |
Nat. Struct. Mol. Biol |
2015 |
Guanine |
Hernandez, A. R. et al.
|
A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair. |
Angew. Chem. Int. Ed Engl |
2015 |
MoCo |
Hover, B. M., Tonthat, N. K., Schumacher, M. A. & Yokoyama, K.
|
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. |
Proc. Natl. Acad. Sci. U. S. A |
2015 |
Wco |
Hover, B. M., Tonthat, N. K., Schumacher, M. A. & Yokoyama, K.
|
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. |
Proc. Natl. Acad. Sci. U. S. A |
2015 |
TPP |
Yadav, S., Swati, D. & Chandrasekharan, H.
|
Thiamine pyrophosphate riboswitch in some representative plant species: a bioinformatics study. |
J. Comput. Biol |
2015 |
Manganese |
Dambach, M. et al.
|
The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. |
Mol. Cell |
2015 |
Manganese |
Price, I. R., Gaballa, A., Ding, F., Helmann, J. D. & Ke, A.
|
Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. |
Mol. Cell |
2015 |
SAM-II_clan |
Xue, X., Yongjun, W., & Zhihong, L.
|
Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation. |
J. Theor. Biol |
2015 |
PreQ1 |
Liberman, J. A.
|
Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. |
Proc. Natl. Acad. Sci. U. S. A |
2015 |
Fluoride |
Chawla, M., Credendino, R., Poater, A., Oliva, R. & Cavallo, L.
|
Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site. |
J. Am. Chem. Soc |
2015 |
c-di-GMP |
Bordeleau, E. et al.
|
Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile |
J. Bacteriol |
2016 |
FMN |
Howe, J. A., L. Xiao, T. O. Fischmann, H. Wang, H. Tang, A. Villafania, R. Zhang, C. M. Barbieri and T. Roemer.
|
Atomic resolution mechanistic studies of ribocil: A highly selective unnatural ligand mimic of the E. coli FMN riboswitch. |
RNA Biol |
2016 |
Azaaromatic |
Li, S., Hwang, X. Y., Stav, S. & Breaker, R. R.
|
The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds. |
RNA |
2016 |
Glycine |
Ketterer, S., Gladis, L., Kozica, A. & Meier, M.
|
Engineering and characterization of fluorogenic glycine riboswitches |
Nucleic Acids Res |
2016 |
Glycine |
Ruff, K. M., Muhammad, A., McCown, P. J., Breaker, R. R. & Strobel, S. A.
|
Singlet glycine riboswitches bind ligand as well as tandem riboswitches |
RNA |
2016 |
SAM-II_clan |
Chen, B., LeBlanc, R., & Dayie, T. K.
|
SAM-II riboswitch samples at least two conformations in solution in the absence of ligand: implications for recognition. |
Angew. Chem. Int. Ed Engl |
2016 |
SAM-III |
Suresh, G., Srinivasan, H., Nanda, S., & Priyakumar, U. D.
|
Ligand-induced stabilization of a duplex-like architecture is crucial for the switching mechanism of the SAM-III riboswitch. |
Biochemistry |
2016 |
SAM-III |
Gong, S., Wang, Y., Wang, Z., Wang, Y., & Zhang, W.
|
Reversible-switch mechanism of the SAM-III riboswitch. |
J. Phys. Chem |
2017 |
Lysine |
Mukherjee, S., Barash, D. & Sengupta, S.
|
Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria |
PLoS One |
2017 |
FMN |
Weinberg, Z., Nelson, J. W., Lünse, C. E., Sherlock, M. E. & Breaker, R. R.
|
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. |
Proc. Natl. Acad. Sci. U. S. A |
2017 |
2'-dG |
Weinberg, Z., Nelson, J. W., Lünse, C. E., Sherlock, M. E. & Breaker, R. R.
|
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. |
Proc. Natl. Acad. Sci. U. S. A |
2017 |
Adenine |
Stagno, J. R. et al.
|
Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. |
Nature |
2017 |
THF |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
NAD+-I |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
SAM-SAH |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
PRA |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
Xanthine |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
Li+ |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
Na+ |
Weinberg, Z., Lünse, C. E., Corbino, K. A., Ames, T. D., Nelson, J. W., Roth, A., Perkins, K. R., Sherlock, M. E., & Breaker, R. R.
|
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. |
Nucleic Acids Res |
2017 |
Guanidine |
Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R.
|
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. |
Mol. Cell |
2017 |
ADP |
Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R.
|
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. |
Mol. Cell |
2017 |
PRPP |
Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R.
|
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. |
Mol. Cell |
2017 |
ppGpp |
Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R.
|
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. |
Mol. Cell |
2017 |
Guanidine |
Sherlock, M. E., Malkowski, S. N. & Breaker, R. R.
|
Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria. |
Biochemistry |
2017 |
Guanidine |
Sherlock, M. E. & Breaker, R. R.
|
Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria. |
Biochemistry |
2017 |
Guanidine |
Reiss, C. W., Xiong, Y. & Strobel, S. A.
|
Structural Basis for Ligand Binding to the Guanidine-I Riboswitch. |
Structure |
2017 |
Guanidine |
Battaglia, R. A., Price, I. R. & Ke, A.
|
ykkCStructural basis for guanidine sensing by the family of riboswitches. |
RNA |
2017 |
Guanidine |
Huang, L., Wang, J. & Lilley, D. M. J.
|
The Structure of the Guanidine-II Riboswitch. |
Cell Chem Biol |
2017 |
Guanidine |
Reiss, C. W. & Strobel, S. A.
|
Structural basis for ligand binding to the guanidine-II riboswitch. |
RNA |
2017 |
Guanidine |
Huang, L., Wang, J., Wilson, T. J. & Lilley, D. M. J.
|
Structure of the Guanidine III Riboswitch. |
Cell Chem Biol |
2017 |
GlcN6P |
Bingaman, J. L. et al.
|
The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. |
Nat. Chem. Biol |
2017 |
Glycine |
Babina, A. M., Lea, N. E. & Meyer, M. M.
|
In Vivo Behavior of the Tandem Glycine Riboswitch in Bacillus subtilis |
MBio |
2017 |
SAM-I_clan |
Dussault, A.-M., Dubé, A., Jacques, F., Grondin, J. P., and Lafontaine, D. A.
|
Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. |
RNA |
2017 |
SAM-I_clan |
Manz, C., Kobitski, A. Y., Samanta, A., Keller, B. G., Jäschke, A., & Nienhaus, G. U.
|
Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. |
Nat. Chem. Biol |
2017 |
Cobalamine |
Choudhary, P. K., Gallo, S. & Sigel, R. K.
|
Tb(3+)-Cleavage Assays Reveal Specific Mg(2+) Binding Sites Necessary to Pre-fold the btuB Riboswitch for AdoCbl Binding. |
Frontiers in chemistry |
2017 |
Cobalamine |
Polaski, J. T., Webster, S. M., Johnson, J. E. & Batey, R. T.
|
Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin. |
J. Biol. Chem |
2017 |
SAM-II_clan |
Roy, S., Lammert, H., Hayes, R. L., Chen, B., LeBlanc, R., Dayie, T. K., Onuchic, J. N., & Sanbonmatsu, K. Y.
|
A magnesium-induced triplex pre-organizes the SAM-II riboswitch. |
PLoS Comput. Biol |
2017 |
Fluoride |
Zhao, B., Guffy, S. L., Williams, B. & Zhang, Q.
|
An excited state underlies gene regulation of a transcriptional riboswitch. |
Nat. Chem. Biol |
2018 |
Glutamine |
Klähn, S. et al.
|
A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria |
Nucleic Acids Res |
2018 |
FMN |
Rizvi, N. F. et al.
|
Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. |
ACS Chem. Biol |
2018 |
FMN |
Vicens, Q. et al.
|
Structure-Activity Relationship of Flavin Analogues That Target the Flavin Mononucleotide Riboswitch. |
ACS Chem. Biol |
2018 |
c-AMP-GMP |
Keller, H., Weickhmann, A. K., Bock, T. & Wöhnert, J.
|
Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches. |
RNA |
2018 |
c-AMP-GMP |
Li, C., Zhao, X., Zhu, X., Xie, P. & Chen, G.
|
Structural Studies of the 3',3'-cGAMP Riboswitch Induced by Cognate and Noncognate Ligands Using Molecular Dynamics Simulation. |
Int. J. Mol. Sci |
2018 |
SAM-SAH |
Weickhmann, A. K., Keller, H., Duchardt-Ferner, E., Strebitzer, E., Juen, M. A., Kremser, J., Wurm, J. P., Kreutz, C., & Wöhnert, J.
|
NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine. |
Biomol. NMR Assign |
2018 |
SAM-VI |
Mirihana Arachchilage, G., Sherlock, M. E., Weinberg, Z., & Breaker, R. R.
|
SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches. |
RNA Biol |
2018 |
ppGpp |
Sherlock, M. E., Sudarsan, N., Stav, S. & Breaker, R. R.
|
Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. |
Elife |
2018 |
PRPP |
Sherlock, M. E., Sudarsan, N., Stav, S. & Breaker, R. R.
|
Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. |
Elife |
2018 |
ADP |
Sherlock, M. E., Sudarsan, N., Stav, S. & Breaker, R. R.
|
Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. |
Elife |
2018 |
ppGpp |
Sherlock, M. E., Sudarsan, N. & Breaker, R. R.
|
Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. |
Proc. Natl. Acad. Sci. U. S. A |
2018 |
PRPP |
Peselis, A. & Serganov, A.
|
ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands. |
Nat. Chem. Biol |
2018 |
ppGpp |
Peselis, A. & Serganov, A.
|
ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands. |
Nat. Chem. Biol |
2018 |
PRPP |
Knappenberger, A. J., Reiss, C. W. & Strobel, S. A.
|
Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. |
Elife |
2018 |
Azaaromatic |
Gong, S., Wang, Y., Wang, Z., Wang, Y. & Zhang, W.
|
Genetic regulation mechanism of the yjdF riboswitch. |
J. Theor. Biol |
2018 |
TPP |
Mukherjee, S., Retwitzer, Barash, D. & Sengupta, S.
|
Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP riboswitches in fungi. |
Sci. Rep |
2018 |
Manganese |
Bachas, S. T. & Ferré-D’Amaré, A. R.
|
Convergent Use of Heptacoordination for Cation Selectivity by RNA and Protein Metalloregulators. |
Cell Chem Biol 25, 962–973 |
2018 |
Glycine |
Khani, A., Popp, N., Kreikemeyer, B. & Patenge, N.
|
A Glycine Riboswitch in Controls Expression of a Sodium:Alanine Symporter Family Protein Gene |
Front. Microbiol |
2018 |
SAM-I_clan |
Manz, C., Kobitski, A. Y., Samanta, A., Jäschke, A., & Nienhaus, G. U.
|
The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study. |
J. Chem. Phys |
2018 |
SAM-II_clan |
Huang, L., & Lilley, D. M. J.
|
Structure and ligand binding of the SAM-V riboswitch. |
Nucleic Acids Res |
2018 |
PreQ1 |
Widom, J. R. et al.
|
Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing. |
Mol. Cell |
2018 |
c-di-GMP |
Inuzuka, S. et al.
|
Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain |
Genes Cells |
2019 |
Glutamine |
Huang, L., Wang, J., Watkins, A. M., Das, R. & Lilley, D. M. J.
|
Structure and ligand binding of the glutamine-II riboswitch |
Nucleic Acids Res |
2019 |
T-box |
Battaglia, R. A., Grigg, J. C. & Ke, A.
|
Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators. |
Nat. Struct. Mol. Biol |
2019 |
T-box |
Li, S. et al.
|
Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. |
Nat. Struct. Mol. Biol |
2019 |
T-box |
Weaver, J. W. & Serganov, A.
|
T-box RNA gets boxed. |
Nat. Struct. Mol. Biol |
2019 |
2'-dG |
Matyjasik, M. M. & Batey, R. T.
|
Structural basis for 2′-deoxyguanosine recognition by the 2′-dG-II class of riboswitches. |
Nucleic Acids Res |
2019 |
SAM-SAH |
Weickhmann, A. K., Keller, H., Wurm, J. P., Strebitzer, E., Juen, M. A., Kremser, J., Weinberg, Z., Kreutz, C., Duchardt-Ferner, E., & Wöhnert, J.
|
The structure of the SAM/SAH-binding riboswitch. |
Nucleic Acids Res |
2019 |
ZTP |
Jones, C. et al.
|
Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser |
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun |
2019 |
ZTP |
Strobel, E. J., Cheng, L., Berman, K. E., Carlson, P. D. & Lucks, J. B.
|
A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control |
Nat. Chem. Biol |
2019 |
ZTP |
Perkins, K. R., Atilho, R. M., Moon, M. H. & Breaker, R. R.
|
Employing a ZTP Riboswitch to Detect Bacterial Folate Biosynthesis Inhibitors in a Small Molecule High-Throughput Screen |
ACS Chem. Biol |
2019 |
Guanidine |
Huang, L., Wang, J., Wilson, T. J. & Lilley, D. M. J.
|
Structure-guided design of a high-affinity ligand for a riboswitch. |
RNA |
2019 |
SAM-VI |
Sun, A., Gasser, C., Li, F., Chen, H., Mair, S., Krasheninina, O., Micura, R., & Ren, A.
|
SAM-VI riboswitch structure and signature for ligand discrimination. |
Nat. Commun |
2019 |
TPP |
Stav, S. et al.
|
Genome-wide discovery of structured noncoding RNAs in bacteria. |
BMC Microbiol |
2019 |
HMP-PP |
Stav, S. et al.
|
Genome-wide discovery of structured noncoding RNAs in bacteria. |
BMC Microbiol |
2019 |
Manganese |
Martin, J. E. et al.
|
A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus. |
Nucleic Acids Res |
2019 |
Manganese |
Suddala, K. C. et al.
|
Local-to-global signal transduction at the core of a Mn sensing riboswitch. |
Nat. Commun |
2019 |
Glycine |
Zhou, L. et al.
|
Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in Escherichia coli |
ACS Synth. Biol |
2019 |
ADP |
Sherlock, M. E., Sadeeshkumar, H. & Breaker, R. R.
|
Variant Bacterial Riboswitches Associated with Nucleotide Hydrolase Genes Sense Nucleoside Diphosphates. |
Biochemistry |
2019 |
SAM-I_clan |
Zhang, K., Li, S., Kappel, K., Pintilie, G., Su, Z., Mou, T. C., Schmid, M. F., Das, R., & Chiu, W.
|
Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. |
Nat. Commun |
2019 |
THF |
Chen, X., Mirihana, A. G. & Breaker, R. R.
|
Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria. |
RNA |
2019 |
c-di-AMP |
Wang, X. et al.
|
A c-di-AMP riboswitch controlling kdpFABC operon transcription regulates the potassium transporter system in Bacillus thuringiensis. |
Commun Biol |
2019 |
NAD+-I |
Malkowski, S. N., Spencer, T. C. J. & Breaker, R. R.
|
Evidence that the nadA motif is a bacterial riboswitch for the ubiquitous enzyme cofactor NAD |
RNA |
2019 |
PreQ1 |
Connelly, C. M. et al.
|
Synthetic ligands for PreQ1 riboswitches provide structural and mechanistic insights into targeting RNA tertiary structure. |
Nat. Commun |
2019 |
HMP-PP |
Atilho, R. M., Mirihana, A. G., Greenlee, E. B., Knecht, K. M. & Breaker, R. R.
|
A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer. |
Elife |
2020 |
Lysine |
Sung, H.-L. & Nesbitt, D. J.
|
High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation |
Phys. Chem. Chem. Phys |
2020 |
FMN |
Wilt, H. M., Yu, P., Tan, K., Wang, Y. X. & Stagno, J. R.
|
FMN riboswitch aptamer symmetry facilitates conformational switching through mutually exclusive coaxial stacking configurations. |
Journal of structural biology |
2020 |
NiCo |
Xu, J. & Cotruvo, J. A., Jr.
|
The (NiCo) Riboswitch Responds to Iron(II). |
Biochemistry |
2020 |
SAM-SAH |
Huang, L., Liao, T. W., Wang, J., Ha, T., & Lilley, D. M. J.
|
Crystal structure and ligand-induced folding of the SAM/SAH riboswitch. |
Nucleic Acids Res |
2020 |
ZTP |
Tran, B. et al.
|
Parallel Discovery Strategies Provide a Basis for Riboswitch Ligand Design |
Cell Chem Biol |
2020 |
ZTP |
Hua, B. et al.
|
Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape |
Nat. Commun |
2020 |
Guanidine |
Wuebben, C., Vicino, M. F., Mueller, M. & Schiemann, O.
|
Do the P1 and P2 hairpins of the Guanidine-II riboswitch interact? |
Nucleic Acids Res |
2020 |
Guanidine |
Salvail, H., Balaji, A., Yu, D., Roth, A. & Breaker, R. R.
|
Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria. |
Biochemistry |
2020 |
Guanidine |
Lenkeit, F., Eckert, I., Hartig, J. S. & Weinberg, Z.
|
Discovery and characterization of a fourth class of guanidine riboswitches. |
Nucleic Acids Res |
2020 |
PRA |
Malkowski, S. N., Atilho, R. M., Greenlee, E. B., Weinberg, C. E. & Breaker, R. R.
|
A rare bacterial RNA motif is implicated in the regulation of the purF gene whose encoded enzyme synthesizes phosphoribosylamine. |
RNA |
2020 |
Xanthine |
Yu, D. & Breaker, R. R.
|
A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation. |
RNA |
2020 |
TPP |
Subki, A., Ho, C. L., Ismail, N. F. N., Aa, Z. A. & Zn, B. Y.
|
Identification and characterisation of thiamine pyrophosphate (TPP) riboswitch in Elaeis guineensis. |
PLoS One |
2020 |
Glycine |
Kappel, K. et al.
|
Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures |
Nat |
2020 |
Glycine |
Torgerson, C. D., Hiller, D. A. & Strobel, S. A.
|
The asymmetry and cooperativity of tandem glycine riboswitch aptamers |
RNA |
2020 |
SAM-I_clan |
Tang, D. J., Du, X., Shi, Q., Zhang, J. L., He, Y. P., Chen, Y. M., Ming, Z., Wang, D., Zhong, W. Y., Liang, Y. W., Liu, J. Y., Huang, J. M., Zhong, Y. S., An, S. Q., Gu, H., & Tang, J. L.
|
A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA. |
Nat. Commun |
2020 |
NAD+-I |
Huang, L., Wang, J. & Lilley, D. M. J.
|
Structure and ligand binding of the ADP-binding domain of the NAD+ riboswitch |
RNA |
2020 |
NAD+-I |
Chen, H. et al.
|
Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding |
Nucleic Acids Res |
2020 |
Cobalamine |
Chan, C. W. & Mondragón, A.
|
Crystal structure of an atypical cobalamin riboswitch reveals RNA structural adaptability as basis for promiscuous ligand binding. |
Nucleic Acids Res |
2020 |
PreQ1 |
Schroeder, G. M. et al.
|
Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. |
Nucleic Acids Res |
2021 |
FMN |
Harale, B. et al.
|
Synthesis and evaluation of antimycobacterial activity of riboflavin derivatives. |
Bioorg. Med. Chem. Lett |
2021 |
Adenine |
St-Pierre, P. et al.
|
A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. |
Nucleic Acids Res |
2021 |
Guanidine |
Sinn, M., Hauth, F., Lenkeit, F., Weinberg, Z. & Hartig, J. S.
|
Widespread bacterial utilization of guanidine as nitrogen source. |
Mol. Microbiol |
2021 |
ppGpp |
Sun, Z. et al.
|
Live-Cell Imaging of Guanosine Tetra- and Pentaphosphate (p)ppGpp with RNA-based Fluorescent Sensors*. |
Angew. Chem. Int. Ed Engl |
2021 |
Xanthine |
Xu, X. et al.
|
Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition. |
Nucleic Acids Res |
2021 |
GlcN6P |
Traykovska, M., Popova, K. B. & Penchovsky, R.
|
Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development. |
ACS Synth. Biol |
2021 |
THF |
Wilt, H. M., Yu, P., Tan, K., Wang, Y. X. & Stagno, J. R.
|
Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation. |
J. Struct. Biol |
2021 |
NAD+-II |
Brewer, K. I. et al.
|
Comprehensive discovery of novel structured noncoding RNAs in 26 bacterial genomes |
RNA Biol |
2021 |
NAD+-II |
Panchapakesan, S. S. S., Corey, L., Malkowski, S. N., Higgs, G. & Breaker, R. R.
|
A second riboswitch class for the enzyme cofactor NAD |
RNA |
2021 |
Cobalamine |
Ma, B., Bai, G., Nussinov, R., Ding, J. & Wang, Y.-X.
|
Conformational Ensemble of AdoCbl Riboswitch Provides Stable Structural Elements for Conformation Selection and Population Shift in Cobalamin Recognition. |
J. Phys. Chem |
2021 |
PreQ1 |
Flemmich, L., Heel, S., Moreno, S., Breuker, K. & Micura, R.
|
A natural riboswitch scaffold with self-methylation activity. |
Nat. Commun |
2021 |
Fluoride |
Chauvier, A., Ajmera, P., Yadav, R. & Walter, N. G.
|
Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. |
Proc. Natl. Acad. Sci. U. S. A |
2022 |
FMN |
Traykovska, M. & Penchovsky, R.
|
Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. |
ACS Synth. Biol |
2022 |
NiCo |
Xu, J. & Cotruvo, J. A., Jr.
|
Iron-responsive riboswitches. |
Curr. Opin. Chem. Biol |
2022 |
NiCo |
Xu, J. & Cotruvo, J. A., Jr.
|
Reconsidering the (NiCo) Riboswitch as an Iron Riboswitch. |
ACS Bio Med Chem Au |
2022 |
c-AMP-GMP |
Tan, Z. et al.
|
The Signaling Pathway That cGAMP Riboswitches Found: Analysis and Application of Riboswitches to Study cGAMP Signaling in Geobacter sulfurreducens. |
Int. J. Mol. Sci |
2022 |
Adenine |
Dey, S. K. et al.
|
Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag. |
Nat. Chem. Biol |
2022 |
2'-dG |
Hamal, D. S., Panchapakesan, S. S. S., Slattery, P., Roth, A. & Breaker, R. R.
|
Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2′-deoxyguanosine. |
Proc. Natl. Acad. Sci. U. S. A |
2022 |
Guanine |
Hamal, D. S., Panchapakesan, S. S. S., Slattery, P., Roth, A. & Breaker, R. R.
|
Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2′-deoxyguanosine. |
Proc. Natl. Acad. Sci. U. S. A |
2022 |
Xanthine |
Hamal, D. S., Panchapakesan, S. S. S., Slattery, P., Roth, A. & Breaker, R. R.
|
Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2′-deoxyguanosine. |
Proc. Natl. Acad. Sci. U. S. A |
2022 |
Guanidine |
Fuks, C., Falkner, S., Schwierz, N. & Hengesbach, M.
|
Combining Coarse-Grained Simulations and Single Molecule Analysis Reveals a Three-State Folding Model of the Guanidine-II Riboswitch. |
Front Mol Biosci |
2022 |
Azaaromatic |
Trachman, R. J., 3rd, Passalacqua, L. F. M. & Ferré-D’Amaré, A. R.
|
The bacterial yjdF riboswitch regulates translation through its tRNA-like fold. |
J. Biol. Chem |
2022 |
TPP |
Zeller, M. J. et al.
|
Subsite Ligand Recognition and Cooperativity in the TPP Riboswitch: Implications for Fragment-Linking in RNA Ligand Discovery. |
ACS Chem. Biol |
2022 |
TPP |
Zeller, M. J. et al.
|
SHAPE-enabled fragment-based ligand discovery for RNA. |
Proc. Natl. Acad. Sci. U. S. A |
2022 |
Glycine |
Hong, K.-Q., Zhang, J., Jin, B., Chen, T. & Wang, Z.-W.
|
Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli |
Microb. Cell Fact |
2022 |
Li+ |
White, N., Sadeeshkumar, H., Sun, A., Sudarsan, N. & Breaker, R. R.
|
Lithium-sensing riboswitch classes regulate expression of bacterial cation transporter genes. |
Sci. Rep |
2022 |
PreQ1 |
Schroeder, G. M. et al.
|
A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control. |
Nat. Commun |
2022 |
Fluoride |
Yadav, R., Widom, J. R., Chauvier, A. & Walter, N. G.
|
An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. |
Nat. Commun |
2022 |
SAM-III |
Chen, J., Zeng, Q., Wang, W., Sun, H., & Hu, G.
|
Decoding the identification mechanism of an SAM-III riboswitch on ligands through multiple independent gaussian-accelerated molecular dynamics simulations. |
J. Chem. Inf. Model |
2022 |
Na+ |
White, N., Sadeeshkumar, H., Sun, A., Sudarsan, N. & Breaker, R. R.
|
Na riboswitches regulate genes for diverse physiological processes in bacteria. |
Nat. Chem. Biol |
2022 |
MoCo |
Pavlova, N. & Penchovsky, R.
|
Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. |
Antibiotics |
2022 |
Wco |
Pavlova, N. & Penchovsky, R.
|
Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. |
Antibiotics |
2022 |
Magnesium |
Pavlova, N. & Penchovsky, R.
|
Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. |
Antibiotics |
2022 |
SAM-I_clan |
Traykovska, M., & Penchovsky, R.
|
Targeting SAM-I riboswitch using antisense oligonucleotide technology for inhibiting the growth of staphylococcus aureus and listeria monocytogenes. |
Antibiotics |
2023 |
SAM-I_clan |
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A.
|
Structure-based insights into recognition and regulation of SAM-sensing riboswitches. |
Sci China Life Sci |
2023 |
SAM-II_clan |
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A.
|
Structure-based insights into recognition and regulation of SAM-sensing riboswitches. |
Sci China Life Sci |
2023 |
SAM-III |
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A.
|
Structure-based insights into recognition and regulation of SAM-sensing riboswitches. |
Sci China Life Sci |
2023 |
SAM-VI |
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A.
|
Structure-based insights into recognition and regulation of SAM-sensing riboswitches. |
Sci China Life Sci |
2023 |
SAH |
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A.
|
Structure-based insights into recognition and regulation of SAM-sensing riboswitches. |
Sci China Life Sci |
2023 |
SAM-SAH |
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A.
|
Structure-based insights into recognition and regulation of SAM-sensing riboswitches. |
Sci China Life Sci |
2023 |
Lysine |
Marton Menendez, A. & Nesbitt, D. J.
|
Ionic Cooperativity between Lysine and Potassium in the Lysine Riboswitch: Single-Molecule Kinetic and Thermodynamic Studies |
J. Phys. Chem |
2023 |
SAM-SAH |
Hu, G., & Zhou, H. X.
|
Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch. |
BioRxiv |
2023 |
ZTP |
Bushhouse, D. Z. & Lucks, J. B.
|
Tuning strand displacement kinetics enables programmable ZTP riboswitch dynamic range in vivo |
Nucleic Acids Res |
2023 |
SAM-VI |
Xue, Y., Li, J., Chen, D., Zhao, X., Hong, L., & Liu, Y.
|
Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution. |
Nat. Commun |
2023 |
MoCo |
Amadei, F., Reichenbach, M., Gallo, S. & Sigel, R. K. O.
|
The structural features of the ligand-free moaA riboswitch and its ion-dependent folding. |
J. Inorg. Biochem |
2023 |
Wco |
Amadei, F., Reichenbach, M., Gallo, S. & Sigel, R. K. O.
|
The structural features of the ligand-free moaA riboswitch and its ion-dependent folding. |
J. Inorg. Biochem |
2023 |
TPP |
Lee, H. K. et al.
|
Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. |
Structure |
2023 |
THF |
Xu, L., Xiao, Y., Zhang, J. & Fang, X.
|
Structural insights into translation regulation by the THF-II riboswitch. |
Nucleic Acids Res |
2023 |
c-di-AMP |
Reich, S. J. et al.
|
C-di-AMP Is a Second Messenger in Corynebacterium glutamicum That Regulates Expression of a Cell Wall-Related Peptidase via a Riboswitch. |
Microorganisms |
2023 |
NAD+-II |
Xu, X. et al.
|
Structure-based investigations of the NAD+-II riboswitch |
Nucleic Acids Res |
2023 |
NAD+-II |
Peng, X., Liao, W., Lin, X., Lilley, D. M. J. & Huang, L.
|
Crystal structures of the NAD+-II riboswitch reveal two distinct ligand-binding pockets |
Nucleic Acids Res |
2023 |
Cobalamine |
Lennon, S. R. et al.
|
Targeting Riboswitches with Beta-Axial-Substituted Cobalamins. |
ACS Chem. Biol |